Basit öğe kaydını göster

dc.contributor.authorAkdeniz, Fulya
dc.contributor.authorKayıkcıoğu, Temel
dc.date.accessioned2020-12-19T19:49:04Z
dc.date.available2020-12-19T19:49:04Z
dc.date.issued2017
dc.identifier.citationAkdeniz, F. & Kayıkcıoğlu, T. (2017). Büyük Choi Williams Zaman-Frekans Öznitelik Seti Kullanarak EKG Aritmi Tespiti. 2017 Medical Technologies National Congress (Tiptekno). http://doi.org/10.1109/TIPTEKNO.2017.8238090en_US
dc.identifier.isbn978-1-5386-0633-9
dc.identifier.urihttps://hdl.handle.net/11436/2214
dc.identifier.urihttp://doi.org/10.1109/TIPTEKNO.2017.8238090en_US
dc.descriptionMedical Technologies National Congress (TIPTEKNO) -- OCT 12-14, 2017 -- TRABZON, TURKEYen_US
dc.descriptionWOS: 000427649500064en_US
dc.description.abstractEarly detection and monitoring of heart diseases increase human quality of life and this can prevent negative consequences. It is even more important because it can prevent sudden deaths. in today's technology, these operations can be done with telemedicine systems. in this work, appropriate methods have been proposed for telemedicine systems. the proposed system is of two classes and is based on detection of arrhythmia from healthy and diseased ECG signals. MIT-BIH Arrhythmia database was used in the study. A total of 103026 R-R interval were used in this database. in this study, the Choi-Williams transformation is used as an feature extraction method. the performance results are given as accuracy, specificity and positive predictive accuracy, respectively 94.67%, 94.97%, 92.57%, 97.36%, 97.23%en_US
dc.description.sponsorshipIEEE Turkey Secten_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectrocardiogram (ECG)en_US
dc.subjectTime-Frequency Analysisen_US
dc.subjectChoi-Williams Distributionen_US
dc.subjectArrhythmia Detectionen_US
dc.subjectTelemedicineen_US
dc.titleBüyük Choi Williams zaman-frekans öznitelik seti kullanarak EKG aritmi tespitien_US
dc.title.alternativeDetection of ECG arrhythmia using large Choi Williams time-frequency feature feten_US
dc.typeconferenceObjecten_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAkdeniz, Fulya
dc.identifier.doi10.1109/TIPTEKNO.2017.8238090en_US
dc.relation.journal2017 Medical Technologies National Congress (Tiptekno)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster