• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress

Thumbnail

View/Open

Full Text / Tam Metin (712.5Kb)

Access

info:eu-repo/semantics/openAccess

Date

2013

Author

Güzel, Şule
Terzi, Rabiye

Metadata

Show full item record

Citation

Güzel, Ş., Terzi, R., (2013). Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress. Botanical Studies, 54(26).

Abstract

Background: the effects of exogenously applied H2O2 on growth, water status, the mineral ion content (Na+, K+, Ca2+, Mg2+ and Cu2+), proline, total sugars and soluble proteins were assessed in leaves of maize (Zea mays L.) cultivars, Akpinar and Pegaso exposed to excess copper (0.5 mM). Seedlings were grown in equal-sizes plastic pots and irrigated with Hoagland nutrient solution containing H2O2 or/and copper. Different treatments taken for pot experiments were named as the control (C), H2O2 treatment only (H2O2), excess Cu (Cu) and, Cu stress combined with H2O2 pretreatment (Cu + H2O2). Results: Treatment of H2O2 caused the increases in growth, water content, mineral concentration, proline, total sugar and soluble protein contents compared to the control groups in the leaves of both cultivars. Yet excess copper caused reductions in the growth, leaf water potential, Na+, K+, Ca+, Mg2+ concentrations and soluble protein levels but increases in proline, total soluble sugars and Cu2+ contents compared to the control group. Dry matter, leaf water potential and mineral content of Cu + H2O2 group revealed a lower decrease than Cu group ones. A higher increase was also observed in proline and total sugar contents of Cu + H2O2 group than Cu group ones in both cultivars. Conclusions: These data revealed that exogenous H2O2 might increase the dry matter production and the mineral ion distribution in maize seedlings. Moreover, osmotic regulation might be involved in alleviation of copper toxicity of maize leaves by pretreatment of H2O2.

Source

Botanical Studies

Volume

54

URI

https://doi.org/10.1186/1999-3110-54-26
https://hdl.handle.net/11436/3294

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [594]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.