• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning models to estimate the elastic modulus of weathered magmatic rocks

Thumbnail

Göster/Aç

Full Text / Tam Metin (7.464Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Ceryan, Nurcihan
Özkat, Erkan Caner
Korkmaz Can, Nuriye
Ceryan, Şener

Üst veri

Tüm öğe kaydını göster

Künye

Ceryan, N., Ozkat, E.C., Korkmaz Can, N. & Ceryan, S. (2021). Machine learning models to estimate the elastic modulus of weathered magmatic rocks. Environmental Earth Sciences, 80(12), 448. https://doi.org/10.1007/s12665-021-09738-9

Özet

In recent years, several soft computing models have been proposed to estimate the elastic modulus of magmatic rocks. However, there are lacks in models that consider the different weathering degrees in determining the elastic modulus of rocks. In the literature, mechanical properties are widely used as inputs in predictive models for weathered rocks; however, there are only a few models that use index properties representing the effect of weathering on magmatic rocks. In this study, support vector regression (SVR) Gaussian process regression (GPR), and artificial neural network (ANN) models were developed to predict the elastic modulus of magmatic rocks with different degrees of weathering. The inputs selected by the best subset regression approach were porosity, P-wave velocity, and slake durability index. Key performance indicators (KPIs) were computed to validate the accuracy of the developed models. In addition to KPIs, Taylor diagrams and regression error characteristic (REC) curves were used to assess the performance of the developed prediction models. In this study, considering the difficulties of expressing the error using only RMSE and MAE, a new performance index (PI), PIMAE, was proposed using normalized MAE instead of normalized RMSE. It was also indicated that PIRMSE and PIMAE should be used together in performance analysis. When considering the Taylor diagram, PIRMSE, and PIMAE, the GPR models performed best, and the SVR model performed the worst in both the training and test periods. Similarly, according to the REC curve in both periods, the performance of the SVR was the worst, while the performance of the ANN model was the best. The PIRMSE and PIMAE values of the GPR model for the test data were 1.3779 and 1.4142, respectively, and they were 1.2567 and 1.4139, respectively, for the ANN model. According to the computed response surfaces, an increase in the P-wave velocity, and a decrease in the porosity increased the elastic modulus. However, changes in slake durability index only had a minor effect on the elastic modulus.

Kaynak

Environmental Earth Sciences

Cilt

80

Sayı

12

Bağlantı

https://doi.org/10.1007/s12665-021-09738-9
https://hdl.handle.net/11436/6651

Koleksiyonlar

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.