• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid transparent conductive electrode structure for solar cell application

Thumbnail

View/Open

Full Text / Tam Metin (473.2Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Altuntepe, Ali
Olgar, Mehmet Ali
Erkan, Serkan
Hasret, Onur
Keçeci, Ahmet Emin
Kökbudak, Gamze
Tomakin, Murat
Seyhan, Ayşe
Turan, Raşit
Zan, Recep

Metadata

Show full item record

Citation

Altuntepe, A., Olgar, M.A., Erkan, S., Hasret, O., Kececi, A.E., Kokbudak, G., Tomakin, M., Seyhan, A., Turan, R. & Zan, R. (2021). Hybrid transparent conductive electrode structure for solar cell application. Renewable Energy, 180, 178-185. https://doi.org/10.1016/j.renene.2021.08.061

Abstract

This study draws on our experiences with graphene to perform a hybrid TCO structure composed of AZO and graphene. We first set out to enhance the electrical and optical properties of AZO to enable its use especially in the field of solar cell. Hence, in our study, we deposited various thicknesses of AZO thin films on glass substrates and transferred single layer graphene on them to realize the formation of hybrid TCO structure. Among the various AZO film thicknesses, the optimum one, 300 nm, was determined and then the graphene film was added on top of the AZO film. This hybrid structure was applied to the silicon based heterojunction solar cell with the idea of improving the cell performance. The cell performance fabricated using AZO film and AZO + graphene structure was analyzed using solar simulator. Our findings highlight the fact that the presence of graphene improved the cell efficiency by about 7%. Our research was further extended using ITO and ITO + graphene hybrid structure as TCO for silicon-based solar cell. We discovered that graphene incorporation increased the cell efficiency by almost 12% based on our results with ITO + graphene hybrid TCO structure on a similar cell. (c) 2021 Elsevier Ltd. All rights reserved.

Source

Renewable Energy

Volume

180

URI

https://doi.org/10.1016/j.renene.2021.08.061
1879-0682
https://hdl.handle.net/11436/6740

Collections

  • FEF, Fizik Bölümü Koleksiyonu [355]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.