Basit öğe kaydını göster

dc.contributor.authorQin, Shiwen
dc.contributor.authorCao, Shuai
dc.contributor.authorYılmaz, Erol
dc.date.accessioned2022-11-22T12:30:21Z
dc.date.available2022-11-22T12:30:21Z
dc.date.issued2022en_US
dc.identifier.citationQin, S.W., Cao, S. & Yilmaz, E. (2022). Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills. Construction and Building Materials, 320, 126296.https://doi.org/10.1016/j.conbuildmat.2021.126296en_US
dc.identifier.issn0950-0618
dc.identifier.issn1879-0526
dc.identifier.urihttps://doi.org/10.1016/j.conbuildmat.2021.126296
dc.identifier.urihttps://hdl.handle.net/11436/7110
dc.description.abstractThe roof stability of artificial structures constructed by cementitious tailings backfill (CTB) is one of the major aspects in the durability of underhand cut and fill mining method. This is because CTB's failure can threaten worker and equipment safety and create ore dilution. An interesting question is whether 3D printed polymeric lattice (3DPPL) can enhance powerfully CTB's strength characteristics? To explore this topic, diverse 3DPPL shapes (i.e., hexagon, square and rhombus) and material types (i.e., transparent resin TR, nylon NY and ordinary resin OR) were considered. Three-point bending tests on CTB samples were carried out with scanning electron microscopy observations to measure their flexural and microstructural characteristics. The following inferences showed that U-shaped 3DPPL reinforced CTB significantly offered improved flexural strengths when material types were OR and NY. However, material type TR presented a major weakening influence on CTB's flexural strength. For a given CTB recipe, rhombus and OR were selected as the best polymer shape and material type among others. All U-shaped 3DPPL reinforced backfills better flexural deflection values than N-3DPPL reinforced ones. The maximum and minimum reinforcement multiples were 44.9 and 0.9. U-shaped 3DPPL obviously changes CTB's flexural characteristics, from traditional brittle failure to ductile failure. The outcomes of this work can afford a strong source for popularization and implementation of underhand cut-and-fill mining system and the stability control of the backfilling materials.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBackfillen_US
dc.subject3D printed polymeric latticeen_US
dc.subjectThree-point bendingen_US
dc.subjectFlexural strengthen_US
dc.subjectMicrostructureen_US
dc.titleEmploying U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfillsen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.institutionauthorYılmaz, Erol
dc.identifier.doi10.1016/j.conbuildmat.2021.126296en_US
dc.identifier.volume320en_US
dc.identifier.startpage126296en_US
dc.relation.journalConstruction and Building Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster