Basit öğe kaydını göster

dc.contributor.authorSevgili, Coşkan
dc.contributor.authorFışkın, Remzi
dc.contributor.authorÇakır, Erkan
dc.date.accessioned2022-11-23T11:46:22Z
dc.date.available2022-11-23T11:46:22Z
dc.date.issued2022en_US
dc.identifier.citationSevgili, C., Fiskin, R. & Cakir, E. (2022). A data-driven Bayesian Network model for oil spill occurrence prediction using tankship accidents. Journal of Cleaner Production, 370, 133478. https://doi.org/10.1016/j.jclepro.2022.133478en_US
dc.identifier.issn0959-6526
dc.identifier.issn1879-1786
dc.identifier.urihttps://doi.org/10.1016/j.jclepro.2022.133478
dc.identifier.urihttps://hdl.handle.net/11436/7123
dc.description.abstractOil spills are one of the most important issues facing the maritime industry, with a wide range of catastrophic environmental, social, and economic effects. While all marine accidents can cause pollution, tankships are most likely to cause oil spills due to their cargo content. Accordingly, this study develops a model based on a data -driven Bayesian Network (BN) algorithm to predict whether oil spills may occur following tankship accidents using a total of 2080 accident reports of non-US flagged vessels from the database of the United States Coast Guard (USCG). The analysis shows that the developed model has a very high predictive power with an accuracy value of 75.96%. The most important variables affecting oil spill probability are accident type, vessel age, vessel size and waterway type. The findings are also supported by various scenario tests. These findings will be especially useful for decision-making authorities to predict as quickly as possible whether an oil spill will occur following an accident in order to reduce the time to intervene.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOil spillen_US
dc.subjectMarine environmenten_US
dc.subjectData -driven bayesian networken_US
dc.subjectMachine learningen_US
dc.titleA data-driven Bayesian Network model for oil spill occurrence prediction using tankship accidentsen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Turgut Kıran Denizcilik Fakültesi, Deniz Ulaştırma İşletme Mühendisliği Bölümüen_US
dc.contributor.institutionauthorÇakır, Erkan
dc.identifier.doi10.1016/j.jclepro.2022.133478en_US
dc.identifier.volume370en_US
dc.identifier.startpage133478en_US
dc.relation.journalJournal of Cleaner Productionen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster