dc.contributor.author | Alaca, Şaban | |
dc.contributor.author | Kesicioğlu, Yavuz | |
dc.date.accessioned | 2023-08-18T06:00:03Z | |
dc.date.available | 2023-08-18T06:00:03Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.citation | Alaca, Ş. & Kesicioğlu, Y. (2023). Evaluation of the convolution sum Sigma(al+ bm=n) sigma(l) sigma(3)(m) for (a, b) = (1,7), (7,1), (1,8), (8,1), (1,9), (9,1) and representations by certain quadratic forms in twelve variables. Indian Journal of Pure and Applied Mathematics. https://doi.org/10.1007/s13226-023-00459-2 | en_US |
dc.identifier.issn | 0019-5588 | |
dc.identifier.issn | 0975-7465 | |
dc.identifier.uri | https://doi.org/10.1007/s13226-023-00459-2 | |
dc.identifier.uri | https://hdl.handle.net/11436/8053 | |
dc.description.abstract | For a positive integer n we evaluate the convolution sum Sigma(al+ bm=n) sigma(l) sigma(3)(m) for (a, b) = (1, 7), (7, 1), (1, 8), (8, 1), (1, 9), (9, 1) . We then use these evaluations together with knownevaluations of other convolution sums to determine the numbers of representations of n by the forms x(1)(2) + x(2)(2) + x(3)(2) + x(4)(2) + 2(x(5)(2) + x(6)(2) + x (2)(7) + x(8)(2) + x (2)(9) + x(10)(2) + x(11)(2) + x(12)(2)), x(1)(2) + x(2) (2) + x(3)(2) + x(2)(4) + x(5)(2) + x(6)(2) + x(7)(2) + x(8)(2) + 2(x(9)(2) + x(10)(2) + x(11)(2) + x(12)(2)), x(1)(2) + x(1)x(2) + x(2) (2) + x(3)(2) + x(3)x(4) + x(4)(2) + 3(x(5)(2) + x(5)x(6) + x(6)(2) + x(7)(2) + x(7)x(8) + x(8)(2) + x(9)(2) + x(9)x(10) + x(10)(2) + x(11)(2) + x(11)x(12) + x(12)(2)), x(1)(2) + x(1)x(2) + x(2)(2) + x(3)(2) + x(3)x(4) + x(4)(2) + x(5)(2) + x(5)x(6) + x(6)(2) + x(7)(2) + x(7)x(8) + x(8)(2) + 3(x(9)(2) + x(9)x(10) + x(10)(2) + x(11)(2) + x(11)x(12) + x(12)(2)). We use a modular form approach. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolution sums | en_US |
dc.subject | Sum of divisors function | en_US |
dc.subject | Eisenstein series | en_US |
dc.subject | Modular forms | en_US |
dc.subject | Cusp forms | en_US |
dc.subject | Dedekind eta function | en_US |
dc.subject | Quadratic forms | en_US |
dc.subject | Representations | en_US |
dc.title | Evaluation of the convolution sum ∑al+bm=nσ(l)σ3(m) for (a,b)=(1,7),(7,1),(1,8),(8,1),(1,9),(9,1) and representations by certain quadratic forms in twelve variables | en_US |
dc.title.alternative | Evaluation of the convolution sum Sigma(al+ bm=n) sigma(l) sigma(3)(m) for (a, b) = (1,7), (7,1), (1,8), (8,1), (1,9), (9,1) and representations by certain quadratic forms in twelve variables | en_US |
dc.type | article | en_US |
dc.contributor.department | RTEÜ, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Kesicioğlu, Yavuz | |
dc.identifier.doi | 10.1007/s13226-023-00459-2 | en_US |
dc.relation.journal | Indian Journal of Pure and Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |