• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques

Thumbnail

Göster/Aç

Full Text / Tam Metin (2.039Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2023

Yazar

Kurt, Burçin
Gürlek, Beril
Keskin, Seda
Özdemir, Sinem
Karadeniz, Özlem
Kırkbir, İlknur Bucan
Kurt, Tuğba
Ünsal, Serbülent
Kart, Cavit
Baki, Neslihan
Turhan, Kemal

Üst veri

Tüm öğe kaydını göster

Künye

Kurt, B., Gürlek, B., Keskin, S., Özdemir, S., Karadeniz, Ö., Kırkbir, İ. B., Kurt, T., Ünsal, S., Kart, C., Baki, N., & Turhan, K. (2023). Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques. Medical & biological engineering & computing, 61(7), 1649–1660. https://doi.org/10.1007/s11517-023-02800-7

Özet

The study aimed to develop a clinical diagnosis system to identify patients in the GD risk group and reduce unnecessary oral glucose tolerance test (OGTT) applications for pregnant women who are not in the GD risk group using deep learning algorithms. With this aim, a prospective study was designed and the data was taken from 489 patients between the years 2019 and 2021, and informed consent was obtained. The clinical decision support system for the diagnosis of GD was developed using the generated dataset with deep learning algorithms and Bayesian optimization. As a result, a novel successful decision support model was developed using RNN-LSTM with Bayesian optimization that gave 95% sensitivity and 99% specificity on the dataset for the diagnosis of patients in the GD risk group by obtaining 98% AUC (95% CI (0.95-1.00) and p < 0.001). Thus, with the clinical diagnosis system developed to assist physicians, it is planned to save both cost and time, and reduce possible adverse effects by preventing unnecessary OGTT for patients who are not in the GD risk group.

Kaynak

Medical & Biological Engineering & Computing

Cilt

61

Sayı

7

Bağlantı

https://doi.org/10.1007/s11517-023-02800-7
https://hdl.handle.net/11436/8209

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • TF, Cerrahi Tıp Bilimleri Bölümü Koleksiyonu [1216]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.