• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques

Thumbnail

View/Open

Full Text / Tam Metin (2.039Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Kurt, Burçin
Gürlek, Beril
Keskin, Seda
Özdemir, Sinem
Karadeniz, Özlem
Kırkbir, İlknur Bucan
Kurt, Tuğba
Ünsal, Serbülent
Kart, Cavit
Baki, Neslihan
Turhan, Kemal

Metadata

Show full item record

Citation

Kurt, B., Gürlek, B., Keskin, S., Özdemir, S., Karadeniz, Ö., Kırkbir, İ. B., Kurt, T., Ünsal, S., Kart, C., Baki, N., & Turhan, K. (2023). Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques. Medical & biological engineering & computing, 61(7), 1649–1660. https://doi.org/10.1007/s11517-023-02800-7

Abstract

The study aimed to develop a clinical diagnosis system to identify patients in the GD risk group and reduce unnecessary oral glucose tolerance test (OGTT) applications for pregnant women who are not in the GD risk group using deep learning algorithms. With this aim, a prospective study was designed and the data was taken from 489 patients between the years 2019 and 2021, and informed consent was obtained. The clinical decision support system for the diagnosis of GD was developed using the generated dataset with deep learning algorithms and Bayesian optimization. As a result, a novel successful decision support model was developed using RNN-LSTM with Bayesian optimization that gave 95% sensitivity and 99% specificity on the dataset for the diagnosis of patients in the GD risk group by obtaining 98% AUC (95% CI (0.95-1.00) and p < 0.001). Thus, with the clinical diagnosis system developed to assist physicians, it is planned to save both cost and time, and reduce possible adverse effects by preventing unnecessary OGTT for patients who are not in the GD risk group.

Source

Medical & Biological Engineering & Computing

Volume

61

Issue

7

URI

https://doi.org/10.1007/s11517-023-02800-7
https://hdl.handle.net/11436/8209

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • TF, Cerrahi Tıp Bilimleri Bölümü Koleksiyonu [1216]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.