Basit öğe kaydını göster

dc.contributor.authorAydın, Muhammet
dc.date.accessioned2023-09-13T07:07:41Z
dc.date.available2023-09-13T07:07:41Z
dc.date.issued2023en_US
dc.identifier.citationAydın, M. (2023). An analysis of human error and reliability in the operation of fixed CO2 systems on cargo ships using HEART Dempster-Shafer evidence theory approach. Ocean Engineering, 286, 115686. https://doi.org/10.1016/j.oceaneng.2023.115686en_US
dc.identifier.issn0029-8018
dc.identifier.urihttps://doi.org/10.1016/j.oceaneng.2023.115686
dc.identifier.urihttps://hdl.handle.net/11436/8310
dc.description.abstractCO2 fixed fire extinguishing system activation accidents may occur as a result of unintentional system activation or human error. Crew members present in the area could suffer serious consequences, including death, if CO2 gas is released into a protected compartment such as the engine room, CO2 room, or cargo area. It is therefore crucial to investigate and address the causes of such accidents. The use of Dempster-Shafer (D-S) theory and the Human Error Assessment and Reduction Technique (HEART) to the Human Reliability Analysis (HRA) of CO2 fixed fire extinguishing system activation accidents is discussed in this study. On the one hand, D-S theory allows for uncertainty-based reasoning and can be extremely advantageous, especially when analysing complex systems where there are many potential challenges. On the other hand, HEART is an organised method to examine and reduce human error in high-risk systems. Together, these techniques provide a powerful tool for identifying and addressing the underlying causes of CO2 fixed fire extinguishing system activation accidents. The study revealed that the total human error probability (HEP) for the CO2 fixed fire extinguishing system was 3.10E-01 and the reliability of human performance for the given process was 6.90E-01. The results of this paper highlight many factors such as equipment failure, inadequate training, and poor maintenance practices, as well as factors contributing to the risk of accidental system activation. By addressing these factors, the probability of CO2-fixed fire suppression system activation accidents can be significantly reduced.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectD-S evidence theoryen_US
dc.subjectFixed CO2 fire extinguishing systemen_US
dc.subjectHEARTen_US
dc.subjectHuman erroren_US
dc.subjectHuman reliabilityen_US
dc.subjectMaritime safetyen_US
dc.subjectSafety operationen_US
dc.titleAn analysis of human error and reliability in the operation of fixed CO2 systems on cargo ships using HEART Dempster-Shafer evidence theory approachen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Turgut Kıran Denizcilik Fakültesi, Deniz Ulaştırma İşletme Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAydın, Muhammet
dc.identifier.doi10.1016/j.oceaneng.2023.115686en_US
dc.identifier.volume286en_US
dc.identifier.startpage115686en_US
dc.relation.journalOcean Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster