Basit öğe kaydını göster

dc.contributor.authorKurt Bayrakdar, Sevda
dc.contributor.authorUğurlu, Mehmet
dc.contributor.authorYavuz, Muhammet Burak
dc.contributor.authorSali, Nichal
dc.contributor.authorBayrakdar, İbrahim Şevki
dc.contributor.authorÇelik, Özer
dc.contributor.authorKöse, Oğuz
dc.contributor.authorBeklen, Arzu
dc.contributor.authorSaylan, Bilge Cansu Uzun
dc.contributor.authorJagtap, Rohan
dc.contributor.authorOrhan, Kaan
dc.date.accessioned2024-02-15T07:13:02Z
dc.date.available2024-02-15T07:13:02Z
dc.date.issued2023en_US
dc.identifier.citationKurt-Bayrakdar, S., Uğurlu, M., Yavuz, M. B., Sali, N., Bayrakdar, İ. Ş., Çelik, Ö., Köse, O., Beklen, A., Uzun Saylan, B. C., Jagtap, R., & Orhan, K. (2023). Detection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: a retrospective study. Quintessence international (Berlin, Germany : 1985), 54(8), 680–693. https://doi.org/10.3290/j.qi.b4157183en_US
dc.identifier.issn0033-6572
dc.identifier.issn1936-7163
dc.identifier.urihttps://doi.org/10.3290/j.qi.b4157183
dc.identifier.urihttps://hdl.handle.net/11436/8806
dc.description.abstractObjectives: This study aimed to develop an artificial intelligence (Al) model that can determine automatic tooth numbering, frenulum attachments, gingival overgrowth areas, and gingival inflammation signs on intraoral photographs and to evaluate the performance of this model. Method and materials: Atotal of 654 intraoral photographs were used in the study (n = 654). All photographs were reviewed by three periodontists, and all teeth, frenulum attachment, gingival overgrowth areas, and gingival inflammation signs on photographs were labeled using the segmentation method in a web-based labeling software. In addition, tooth numbering was carried out according to the FDI system. An Al model was developed with the help of YOLOv5x architecture with labels of 16,795 teeth, 2,493 frenulum attachments, 1,211 gingival overgrowth areas, and 2,956 gingival inflammation signs. The confusion matrix system and ROC (receiver operator characteristic) analysis were used to statistically evaluate the success of the developed model. Results: The sensitivity, precision, Fl score, and AUC (area under the curve) for tooth numbering were 0.990, 0.784, 0.875, and 0.989; for frenulum attachment these were 0.894, 0.775, 0.830, and 0.827; for gingival overgrowth area these were 0.757, 0.675, 0.714, and 0.774; and for gingival inflammation sign 0.737, 0.823, 0.777, and 0.802, respectively. Conclusion: The results of the present study show that Al systems can be successfully used to interpret intraoral photographs. These systems have the potential to accelerate the digital transformation in the clinical and academic functioning of dentistry with the automatic determination of anatomical structures and dental conditions from intraoral photographs. (Quintessence Int2023; 54:680-693; doi:10.3290/j.gi.b4157183)en_US
dc.language.isoengen_US
dc.publisherQuintessence Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectDental photographyen_US
dc.subjectPeriodontologyen_US
dc.titleDetection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: a retrospective studyen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Diş Hekimliği Fakültesi, Klinik Bilimler Bölümüen_US
dc.contributor.institutionauthorKöse, Oğuz
dc.identifier.doi10.3290/j.gi.b4157183en_US
dc.identifier.volume54en_US
dc.identifier.issue8en_US
dc.identifier.startpage680en_US
dc.identifier.endpage693en_US
dc.relation.journalQuintessence Internationalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster