• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stacked ensemble modeling for improved tuberculosis treatment outcome prediction in pediatric cases

Göster/Aç

Tam Metin / Full Text (1.921Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Yılmaz, Yıldıran

Üst veri

Tüm öğe kaydını göster

Künye

Yılmaz, Y. (2024). Stacked ensemble modeling for improved tuberculosis treatment outcome prediction in pediatric cases. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.8089

Özet

The promising results of ML (machine learning) methods in various disciplines have led to the frequent use of these methods in health fields such as disease diagnosis, personalized medicine, medical image-based diagnosis, and predicting the number of deaths and cases in a pandemic. However, a neglected area in the field of healthcare is the lack of study with ML to predict treatment outcomes for tuberculosis (TB) patients, particularly children experiencing failed treatment. This need has become more apparent as the coronavirus pandemic has reversed the gains of health institutions with TB disease, especially in children. Therefore, this article conducted a study using the stacked ensemble ML method to early predict the risk for children experiencing a failed treatment outcome of TB. To fulfill this need and determine the most appropriate technique, a two-stage methodology was followed in this work. First, predictions were obtained by combining the information gain feature selection (IGFS) approach with a variety of single-based ML algorithms, including logistic regression (LR), deep belief neural networks (DBN), random forest (RF), and decision tree (DT). Second, the proposed method, which includes a stacked ensemble ML technique, was used. The latter model uses LR as a meta-learner and the aforementioned single-based ML algorithms (DBN, LR, RF, and DT). The performance results of ML models used in the two stages were compared, and the proposed model which is the combination of the stack-based ensemble learning model and the IGFS technique provided better ROC curves, accuracy, precision, and recall results.

Kaynak

Concurrency and Computation: Practice and Experience

Bağlantı

https://doi.org/10.1002/cpe.8089
https://hdl.handle.net/11436/8912

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.