• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the informative brain region in multiclass electroencephalography and near infrared spectroscopy based BCI system using band power based features

View/Open

Tam Metin / Full Text (2.806Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Ergün, Ebru
Aydemir, Önder
Korkmaz, Onur Erdem

Metadata

Show full item record

Citation

Ergün, E., Aydemir, Ö., & Korkmaz, O. E. (2024). Investigating the informative brain region in multiclass electroencephalography and near infrared spectroscopy based BCI system using band power based features. Computer Methods in Biomechanics and Biomedical Engineering, 1–16. https://doi.org/10.1080/10255842.2024.2333924

Abstract

In recent years, various brain imaging techniques have been used as input signals for brain-computer interface (BCI) systems. Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are two prominent techniques in this field, each with its own advantages and limitations. As a result, there is a growing tendency to integrate these methods in a hybrid within BCI systems. The primary aim of this study is to identify highly functional brain regions within an EEG + NIRS-based BCI system. To achieve this, the research focused on identifying EEG electrodes positioned in different brain lobes and then investigating the functionality of each lobe. The methodology involved segmenting the EEG + NIRS dataset into 2.4 s time windows, and then extracting band-power based features from these segmented signals. A classification algorithm, specifically the k-nearest neighbor algorithm, was then used to classify the features. The result was a remarkable classification accuracy (CA) of 95.54%+/- 1.31 when using the active brain region within the hybrid model. These results underline the effectiveness of the proposed approach, as it outperformed both standalone EEG and NIRS modalities in terms of CA by 5.19% and 40.90%, respectively. Furthermore, the results confirm the considerable potential of the method in classifying EEG + NIRS signals recorded during tasks such as reading text while scrolling in different directions, including right, left, up and down. This research heralds a promising step towards enhancing the capabilities of BCI systems by harnessing the synergistic power of EEG and NIRS technologies.

Source

Computer Methods in Biomechanics and Biomedical Engineering

URI

https://doi.org/10.1080/10255842.2024.2333924
https://hdl.handle.net/11436/8936

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [198]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.