• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vibration data-driven anomaly detection in UAVs: A deep learning approach

Göster/Aç

Tam Metin / Full Text (4.163Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2024

Yazar

Özkat, Erkan Caner

Üst veri

Tüm öğe kaydını göster

Künye

Ozkat, E. C. (2024). Vibration data-driven anomaly detection in UAVs: A deep learning approach. Engineering Science and Technology, an International Journal, 54, 101702. https://doi.org/10.1016/j.jestch.2024.101702

Özet

Unmanned Aerial Vehicles (UAVs) are employed for diverse applications, including aerial surveillance and package delivery. However, the occurrence of faults, especially propeller failures, poses significant risks to safe and efficient operations. Detecting such faults at an early stage is critical to avoiding catastrophic outcomes and ensuring the reliability and lifespan of UAVs. To address this crucial need, this study proposes a novel approach for monitoring vibration signals using a wavelet scattering long short-term memory (LSTM) autoencoder network. The LSTM autoencoder can learn temporal patterns from input signals, whereas wavelet scattering can capture the dynamics and interactions of various frequency components of signals. First, a deliberate modification was made to one of the propeller blades of the DJI M600 multi-rotor UAV to deliberately induce vibration. The proposed network was then evaluated on the acquired vibration signal using the MTi-G-700 IMU. The results showed that warning signals were generated from all axes before failures occurred. Notably, the earliest warnings were obtained from y-axis data within 100 s, while the first warning from z-axis data was recognized 130 s later. The failure occurred at roughly 280 s. The experimental findings indicate that the proposed method can accurately detect anomalies that could potentially lead to failure.

Kaynak

Engineering Science and Technology, an International Journal

Cilt

54

Bağlantı

https://doi.org/10.1016/j.jestch.2024.101702
https://hdl.handle.net/11436/9086

Koleksiyonlar

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.