• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuro-inspired hardware solutions for high-performance computing: A TiO2-based nano-synaptic device approach with backpropagation

Göster/Aç

Tam Metin / Full Text (3.619Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Yılmaz, Yıldıran
Gül, Fatih

Üst veri

Tüm öğe kaydını göster

Künye

Yilmaz, Y., & Gül, F. (2024). Neuro-inspired hardware solutions for high-performance computing: A TiO2-based nano-synaptic device approach with backpropagation. Integration, 97, 102206. https://doi.org/10.1016/j.vlsi.2024.102206

Özet

Computer-based machine learning algorithms that produce impressive performance results are computationally demanding and thus subject to high energy consumption during training and testing. Therefore, compact neuro-inspired devices are required to achieve efficiency in hardware resource consumption for the smooth implementation of neural network applications that require low energy and area. In this paper, learning characteristics and performances of the nanoscale titanium dioxide (TiO2) based synaptic device have been analyzed by implementing it in the hardware-based neural network for digit classification. Our model is experimentally validated by using 32-nm CMOS technology and the results demonstrate that the model provides high computational ability with better accuracy and efficiency in resource consumption with low energy and less area. The proposed model exhibits 20% energy gain and 16.82% accuracy improvement and 18% less total latency compared to the state-of-the-art Ag:Si synaptic device-based neural network. Furthermore, when compared to the software-based (i.e., computer-based) implementation of neural networks, our TiO2-based model not only achieved an impressive accuracy rate of 90.01% on the MNIST dataset but also did so with reduced energy consumption. Consequently, our model, characterized by a low hardware implementation cost, emerges as a promising neuro-inspired hardware solution for various neural network applications. The proposed model has further demonstrated outstanding performance in experiments involving both the MNIST and Fisher's Iris datasets. On the latter dataset, the model exhibited notable precision (94.5%), recall (91.5%), and an impressive F1-score (92.9%), accompanied by a commendable accuracy rate of 93.04%.

Kaynak

Integration

Cilt

97

Bağlantı

https://doi.org/10.1016/j.vlsi.2024.102206
https://hdl.handle.net/11436/9117

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.