dc.contributor.author | Özçelik, Ali Erdem | |
dc.contributor.author | Bendeş, Emre | |
dc.contributor.author | Özçelik, Neslihan | |
dc.date.accessioned | 2025-01-21T07:00:43Z | |
dc.date.available | 2025-01-21T07:00:43Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Özçelik, A. E., Bendes, E., & Özçelik, N. (2024). Decoding the Night: A Machine Learning Approach to Predict the Severity of Obstructive Sleep Apnea through Clinical Parameters. In ERS Congress 2024 abstracts (p. PA4478). European Respiratory Society, 64, 68. https://doi.org/10.1183/13993003.congress-2024.pa4478 | en_US |
dc.identifier.issn | 0903-1936 | |
dc.identifier.issn | 1399-3003 | |
dc.identifier.uri | https://doi.org/10.1183/13993003.congress-2024.pa4478 | |
dc.identifier.uri | https://hdl.handle.net/11436/9936 | |
dc.description.abstract | .... | en_US |
dc.language.iso | eng | en_US |
dc.publisher | European Respiratory | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Decoding the night: A machine learning approach to predict the severity of obstructive sleep apnea through clinical parameters | en_US |
dc.type | conferenceObject | en_US |
dc.contributor.department | RTEÜ, Mühendislik ve Mimarlık Fakültesi, Peyzaj Mimarlığı Bölümü | en_US |
dc.contributor.institutionauthor | Özçelik, Ali Erdem | |
dc.contributor.institutionauthor | Özçelik, Neslihan | |
dc.identifier.doi | 10.1183/13993003.congress-2024.PA4478 | en_US |
dc.identifier.volume | 64 | en_US |
dc.identifier.startpage | 68 | en_US |
dc.relation.journal | European Respiratory Journal | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |