Assisting the diagnosis of cirrhosis in chronic hepatitis c patients based on machine learning algorithms: a novel non-invasive approach

dc.contributor.authorDirican, Emre
dc.contributor.authorBal, Tayibe
dc.contributor.authorOnlen, Yusuf
dc.contributor.authorSarıgül, Figen
dc.contributor.authorUser, Ülkü
dc.contributor.authorSari, Nagehan Didem
dc.contributor.authorYıldız, İlknur Esen
dc.contributor.authorTabak, Ömer Fehmi
dc.date.accessioned2025-09-18T07:45:31Z
dc.date.issued2025
dc.departmentRTEÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü
dc.description.abstractAim: This study aimed to determine the important features and cut-off values after demonstrating the detectability of cirrhosis using routine laboratory test results of chronic hepatitis C (CHC) patients in machine learning (ML) algorithms. Methods: This retrospective multicenter (37 referral centers) study included the data obtained from the Hepatitis C Turkey registry of 1164 patients with biopsy-proven CHC. Three different ML algorithms were used to classify the presence/absence of cirrhosis with the determined features. Results: The highest performance in the prediction of cirrhosis (Accuracy = 0.89, AUC = 0.87) was obtained from the Random Forest (RF) method. The five most important features that contributed to the classification were platelet, αlpha-feto protein (AFP), age, gamma-glutamyl transferase (GGT), and prothrombin time (PT). The cut-off values of these features were obtained as platelet < 182.000/mm3, AFP > 5.49 ng/mL, age > 52 years, GGT > 39.9 U/L, and PT > 12.35 s. Using cut-off values, the risk coefficients were AOR = 4.82 for platelet, AOR = 3.49 for AFP, AOR = 4.32 for age, AOR = 3.04 for GGT, and AOR = 2.20 for PT. Conclusion: These findings indicated that the RF-based ML algorithm could classify cirrhosis with high accuracy. Thus, crucial features and cut-off values for physicians in the detection of cirrhosis were determined. In addition, although AFP is not included in non-invasive indexes, it had a remarkable contribution in predicting cirrhosis. Trial Registration: Clinicaltrials.gov identifier: NCT03145844.
dc.identifier.citationDirican, E., Bal, T., Onlen, Y., Sarigul, F., User, U., Sari, N. D., Kurtaran, B., Senates, E., Gunduz, A., Zerdali, E., Karsen, H., Batirel, A., Karaali, R., Guner, H. R., Yamazhan, T., Kose, S., Erben, N., Ince, N. K., Koksal, I., Oztoprak, N., … Tabak, O. F. (2025). Assisting the Diagnosis of Cirrhosis in Chronic Hepatitis C Patients Based on Machine Learning Algorithms: A Novel Non-Invasive Approach. Journal of clinical laboratory analysis, 39(12), e70054. https://doi.org/10.1002/jcla.70054
dc.identifier.doi10.1002/jcla.70054
dc.identifier.issn0887-8013
dc.identifier.issue12
dc.identifier.pmid40384539
dc.identifier.scopus2-s2.0-105005551496
dc.identifier.scopusqualityQ1
dc.identifier.startpagee70054
dc.identifier.urihttps://doi.org/10.1002/jcla.70054
dc.identifier.urihttps://hdl.handle.net/11436/11133
dc.identifier.volume39
dc.identifier.wosWOS:001490437900001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.institutionauthorYıldız, İlknur Esen
dc.language.isoen
dc.publisherJohn Wiley and Sons Inc
dc.relation.ispartofJournal of Clinical Laboratory Analysis
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAlfa-feto protein
dc.subjectChronic hepatitis C
dc.subjectClassification
dc.subjectDiagnosis of cirrhosis
dc.subjectMachine learning
dc.titleAssisting the diagnosis of cirrhosis in chronic hepatitis c patients based on machine learning algorithms: a novel non-invasive approach
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
dirican-2025.pdf
Boyut:
970.09 KB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: