Novel preprocessing-based sequence for comparative MR cervical lymph node segmentation

dc.contributor.authorTarakçı, Elif Ayten
dc.contributor.authorÇeliker, Metin
dc.contributor.authorBirinci, Mehmet
dc.contributor.authorYemiş, Tuğba
dc.contributor.authorSolak, Merve
dc.contributor.authorKaba, Esat
dc.contributor.authorÇeliker, Fatma Beyazal
dc.contributor.authorCoşkun, Zerrin Özergin
dc.contributor.authorErdivanlı, Özlem Çelebi
dc.date.accessioned2025-11-21T11:47:30Z
dc.date.issued2025
dc.departmentRTEÜ, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü
dc.departmentRTEÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü
dc.description.abstractBackground and Objective: This study aims to utilize deep learning methods for the automatic segmentation of cervical lymph nodes in magnetic resonance images (MRIs), enhancing the speed and accuracy of diagnosing pathological masses in the neck and improving patient treatment processes. Materials and Methods: This study included 1346 MRI slices from 64 patients undergoing cervical lymph node dissection, biopsy, and preoperative contrast-enhanced neck MRI. A preprocessing model was used to crop and highlight lymph nodes, along with a method for automatic re-cropping. Two datasets were created from the cropped images-one with augmentation and one without-divided into 90% training and 10% validation sets. After preprocessing, the ResNet-50 images in the DeepLabv3+ encoder block were automatically segmented. Results: According to the results of the validation set, the mean IoU values for the DWI, T2, T1, T1+C, and ADC sequences in the dataset without augmentation created for cervical lymph node segmentation were 0.89, 0.88, 0.81, 0.85, and 0.80, respectively. In the augmented dataset, the average IoU values for all sequences were 0.91, 0.89, 0.85, 0.88, and 0.84. The DWI sequence showed the highest performance in the datasets with and without augmentation. Conclusions: Our preprocessing-based deep learning architectures successfully segmented cervical lymph nodes with high accuracy. This study is the first to explore automatic segmentation of the cervical lymph nodes using comprehensive neck MRI sequences. The proposed model can streamline the detection process, reducing the need for radiology expertise. Additionally, it offers a promising alternative to manual segmentation in radiotherapy, potentially enhancing treatment effectiveness.
dc.identifier.citationTarakçı, E. A., Çeliker, M., Birinci, M., Yemiş, T., Gül, O., Oğuz, E. F., Solak, M., Kaba, E., Çeliker, F. B., Özergin Coşkun, Z., Alkan, A., & Erdivanlı, Ö. Ç. (2025). Novel Preprocessing-Based Sequence for Comparative MR Cervical Lymph Node Segmentation. Journal of Clinical Medicine, 14(6), 1802. https://doi.org/10.3390/jcm14061802
dc.identifier.doi10.3390/jcm14061802
dc.identifier.issn2077-0383
dc.identifier.issue6
dc.identifier.pmid40142614
dc.identifier.startpage1802
dc.identifier.urihttps://doi.org/10.3390/jcm14061802
dc.identifier.urihttps://hdl.handle.net/11436/11530
dc.identifier.volume14
dc.identifier.wosWOS:001453161600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.institutionauthorTarakçı, Elif Ayten
dc.institutionauthorÇeliker, Metin
dc.institutionauthorBirinci, Mehmet
dc.institutionauthorYemiş, Tuğba
dc.institutionauthorSolak, Merve
dc.institutionauthorKaba, Esat
dc.institutionauthorÇeliker, Fatma Beyazal
dc.institutionauthorCoşkun, Zerrin Özergin
dc.institutionauthorErdivanlı, Özlem Çelebi
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofJournal Of Clinical Medicine
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCervical lymph node
dc.subjectMagnetic resonance imaging
dc.subjectArtificial intelligence
dc.subjectDeep learning
dc.subjectSegmentation
dc.titleNovel preprocessing-based sequence for comparative MR cervical lymph node segmentation
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
tarakçı-2025.pdf
Boyut:
7 MB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: