A comprehensive risk analysis for cargo leakage pollution at tanker ship manifold under cloud modelling and Bayesian belief network approach

dc.contributor.authorElidolu, Gizem
dc.contributor.authorSezer, Şükrü İlke
dc.contributor.authorAkyüz, Emre
dc.contributor.authorGardoni, Paolo
dc.contributor.investigatorAydın, Muhammet
dc.date.accessioned2025-11-22T16:29:17Z
dc.date.issued2025
dc.departmentRTEÜ, Turgut Kıran Denizcilik Fakültesi, Deniz Ulaştırma İşletme Mühendisliği Bölümü
dc.description.abstractOil and chemical tankers play a vital role in global trade, but pose significant environmental risks from potential cargo spills. The manifold area, a critical connection point during loading and unloading operations, is particularly vulnerable to spillage incidents caused by equipment failure, improper hose handling and operator error. This paper assesses the pollution risks associated with cargo spills in the manifold section of tankers by identifying and analysing the key risk factors. A total of 15 risk factors contributing to cargo spillage are identified, including valve malfunction, hose deformation, incorrect gauge installation, inadequate hose support and vessel position shifts. The Cloud Model (CM) and Bayesian Belief Network (BBN) methods are used to quantify and assess these risks. The CM approach is used to deal with uncertainty in expert judgment, while the BBN is used to establish causal relationships between risk factors. Sensitivity analysis reveals that valve failure, hose deformation, incorrect gauge installation, inadequate hose support and vessel position shifts are the most critical contributors to leak incidents. The findings provide valuable insights into risk mitigation strategies and suggest safety measures to minimise pollution risks in tanker operations.
dc.identifier.citationElidolu, G., Sezer, S. I., Akyuz, E., Aydin, M., & Gardoni, P. (2025). A comprehensive risk analysis for cargo leakage pollution at tanker ship manifold under cloud modelling and Bayesian belief network approach. Marine pollution bulletin, 219, 118238. https://doi.org/10.1016/j.marpolbul.2025.118238
dc.identifier.doi10.1016/j.marpolbul.2025.118238
dc.identifier.issn0025-326X
dc.identifier.pmid40460805
dc.identifier.scopus2-s2.0-105006987
dc.identifier.scopusqualityQ1
dc.identifier.startpage118238
dc.identifier.urihttps://doi.org/10.1016/j.marpolbul.2025.118238
dc.identifier.urihttps://hdl.handle.net/11436/11543
dc.identifier.volume219
dc.identifier.wosWOS:001591128300001
dc.identifier.wosqualityQ2
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorAydın, Muhammet
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofMarine Pollution Bulletin
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBayesian belief network
dc.subjectCargo leakage
dc.subjectCloud model
dc.subjectMarine pollution risk
dc.titleA comprehensive risk analysis for cargo leakage pollution at tanker ship manifold under cloud modelling and Bayesian belief network approach
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
elidolu-2025.pdf
Boyut:
2.23 MB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: