Solar thermal systems and AI: Past, present, and future

dc.contributor.authorCüce, Pınar Mert
dc.contributor.authorAlvur, Emre
dc.contributor.authorCüce, Erdem
dc.contributor.authorSoudagar, Manzoore Elahi M.
dc.contributor.authorBouabidi, Abdallah
dc.contributor.authorGuo, Shaopeng
dc.contributor.authorMostafa, Noha A.
dc.date.accessioned2026-01-07T12:54:18Z
dc.date.issued2025
dc.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Mimarlık Bölümü
dc.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Makine Mühendisliği Bölümü
dc.description.abstractThis research explores the role of artificial intelligence (AI) in enhancing the efficiency and reliability of solar thermal, photovoltaic (PV), and hybrid energy systems. As the transition from fossil fuels becomes increasingly crucial due to their contribution to global warming and resource depletion, optimising solar energy systems through AI-driven technologies has become imperative. The study examines solar thermal and PV applications for their ability to generate electricity, heat buildings, and support industrial processes, demonstrating how AI techniques, such as artificial neural networks and machine learning models, enhance system performance and enable real-time monitoring. Additionally, hybrid energy systems, which integrate renewable and non-renewable sources like wind, solar, diesel, and fuel cells, are extensively analysed. AI applications, including support vector machines and genetic algorithms, play a key role in improving the efficiency of these systems by forecasting energy production, optimising storage, and minimising system losses. The research concludes with a SWOT analysis, identifying the strengths, weaknesses, opportunities, and threats of AI integration in energy systems while providing strategic recommendations for future research, policy development, and technological innovation. By leveraging AI in solar and hybrid energy solutions, this study offers a comprehensive framework for enhancing sustainability, reducing emissions, and ensuring a stable energy supply.
dc.identifier.citationCuce, P. M., Alvur, E., Cuce, E., Soudagar, M. E. M., Bouabidi, A., Guo, S., Cao, J., Khalid, W., Alshahrani, S., Alqahtani, A. A., & Mostafa, N. A. (2025). Solar thermal systems and AI: Past, present, and future. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-025-14910-5
dc.identifier.doi10.1007/s10973-025-14910-5
dc.identifier.issn1388-6150
dc.identifier.scopus10.1007/s10973-025-14910-5
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s10973-025-14910-5
dc.identifier.urihttps://hdl.handle.net/11436/11797
dc.indekslendigikaynakScopus
dc.institutionauthorCüce, Pınar Mert
dc.institutionauthorAlvur, Emre
dc.institutionauthorCüce, Erdem
dc.institutionauthorid0000-0002-6522-7092
dc.institutionauthorid0000-0003-0150-4705
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal of Thermal Analysis and Calorimetry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial intelligence
dc.subjectEnergy optimisation
dc.subjectHybrid energy
dc.subjectSolar photovoltaic systems
dc.subjectSolar thermal systems
dc.titleSolar thermal systems and AI: Past, present, and future
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
cüce-2025 (3).pdf
Boyut:
1.98 MB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: