Minimizing delamination in CFRP laminates: experimental and numerical insights into drilling and punching effects

dc.contributor.authorDemiral, Murat
dc.contributor.authorSaracyakupoglu, Tamer
dc.contributor.authorŞahin, Burha
dc.contributor.authorKöklü, Uğur
dc.date.accessioned2025-12-08T07:23:35Z
dc.date.issued2025
dc.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Makine Mühendisliği Bölümü
dc.description.abstractCarbon fiber-reinforced polymer (CFRP) laminates are extensively utilized in aerospace and advanced engineering fields because of their outstanding strength-to-weight ratio and superior fatigue durability. However, despite their high in-plane strength and stiffness, CFRP laminates are inherently susceptible to delamination. This weakness stems from the relatively low interlaminar strength of the resin-rich interfaces between layers compared to the much stronger in-plane fiber reinforcement. During mechanical processes such as drilling and punching, out-of-plane stresses and interlaminar shear forces develop, concentrating at these weak interfaces. This study investigates the delamination behavior of CFRP laminates with 3 to 7 plies under drilling and punching, focusing on the effects of ply count and drilling speed. Experimental tests were conducted using an 8 mm punch and drill bit at 2500, 3000, and 3500 rpm, reflecting typical workshop practices for M8 fastener holes. Scanning electron microscopy (SEM) analyses at different magnifications were used to quantify delamination extent. A three-dimensional finite element model was created in ABAQUS/Explicit, integrating the Hashin failure criterion to predict damage initiation within the plies and cohesive surfaces to simulate interlaminar delamination. The analyses show that with proper support, punching can approach the damage levels of drilling for thin CFRP plates, but drilling remains preferable for thicker laminates due to better integrity and tool longevity.
dc.identifier.citationDemiral, M., Saracyakupoglu, T., Şahin, B., & Köklü, U. (2025). Minimizing Delamination in CFRP Laminates: Experimental and Numerical Insights into Drilling and Punching Effects. Polymers, 17(22), 3056. https://doi.org/10.3390/polym17223056
dc.identifier.doi10.3390/polym17223056
dc.identifier.issn2073-4360
dc.identifier.issue22
dc.identifier.scopus2-s2.0-105022930180
dc.identifier.scopusqualityQ1
dc.identifier.startpage3056
dc.identifier.urihttps://doi.org/10.3390/polym17223056
dc.identifier.urihttps://hdl.handle.net/11436/11647
dc.identifier.volume17
dc.indekslendigikaynakScopus
dc.institutionauthorKöklü, Uğur
dc.institutionauthorid0000-0002-9205-9768
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofPolymers
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergi - Başka Kurum Yazarı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCFRP laminates
dc.subjectCohesive zone modeling
dc.subjectContinuum damage mechanics
dc.subjectDelamination
dc.subjectDrilling and punching
dc.titleMinimizing delamination in CFRP laminates: experimental and numerical insights into drilling and punching effects
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
demiral-2025.pdf
Boyut:
6.88 MB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: