Predicting excellent response to radioiodine in differentiated thyroid cancer using machine learning

dc.contributor.authorBülbül, Ogün
dc.contributor.authorNak, Demet
dc.date.accessioned2025-10-24T11:01:31Z
dc.date.issued2025
dc.departmentRTEÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü
dc.description.abstractObjective. If excellent response (ER) occurs after radioactive iodine (RAI) treatment in patients with differentiated thyroid carcinoma (DTC), the recurrence rate is low. Our study aims to predict ER at 6-24 months after RAI by using machine learning (ML) methods in which clinicopathological parameters are included in patients with DTC without distant metastasis. Methods. Treatment response of 151 patients with DTC without distant metastasis and who received RAI treatment was determined (ER/nonER). Thyroidectomy ± neck dissection pathology data, laboratory, and imaging findings before and after RAI treatment were introduced to ML models. Results. After RAI treatment, 118 patients had ER and 33 had nonER. Before RAI treatment, TgAb was positive in 29% of patients with ER and 55% of patients with nonER (p = 0.007). Eight of the ML models predicted ER with high area under the ROC curve (AUC) values (> 0.700). The model with the highest AUC value was extreme gradient boosting (AUC = 0.871), the highest accuracy shown by gradient boosting (81%). Conclusions. ML models may be used to predict ER in patients with DTC without distant metastasis.
dc.identifier.citationBülbül, O., & Nak, D. (2024). Predicting excellent response to radioiodine in differentiated thyroid cancer using machine learning. Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale, 44(4), 261–268. https://doi.org/ 10.14639/0392-100X-N3029
dc.identifier.doi10.14639/0392-100X-N3029
dc.identifier.endpage268
dc.identifier.issn0392-100X
dc.identifier.issue4
dc.identifier.pmid39347551
dc.identifier.scopus2-s2.0-85205335315
dc.identifier.scopusqualityQ1
dc.identifier.startpage261
dc.identifier.urihttps://doi.org/ 10.14639/0392-100X-N3029
dc.identifier.urihttps://hdl.handle.net/11436/11347
dc.identifier.volume44
dc.identifier.wosWOS:001410615400007
dc.identifier.wosqualityQ2
dc.identifier.wosqualityQ1
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.institutionauthorBülbül, Ogün
dc.institutionauthorNak , Demet
dc.language.isoen
dc.publisherPacini Editore Srl
dc.relation.ispartofActa Otorhinolaryngologica Italica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDifferentiated thyroid cancer
dc.subjectExcellent response
dc.subjectMachine learning
dc.subjectPrediction
dc.subjectRadioactive iodine
dc.titlePredicting excellent response to radioiodine in differentiated thyroid cancer using machine learning
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
bülbül-2025.pdf
Boyut:
603.91 KB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: