Evaluation of parotid tumors using systemic inflammation markers and diffusion-weighted magnetic resonance images

dc.contributor.authorKılıçtaş, Ahmet Ufuk
dc.contributor.authorErdivanlı, Özlem Çelebi
dc.contributor.authorBirinci, Mehmet
dc.contributor.authorBeyazal Çeliker, Fatma
dc.contributor.authorTerzi, Suat
dc.contributor.authorÇeliker, Metin
dc.contributor.authorCoşkun, Zerrin Özergin
dc.contributor.authorDursun, Engin
dc.date.accessioned2025-10-10T07:34:52Z
dc.date.issued2025
dc.departmentRTEÜ, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü
dc.departmentRTEÜ, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü
dc.departmentRTEÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü
dc.departmentRTEÜ, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü
dc.departmentRTEÜ, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü
dc.description.abstractBackground: Preoperative differentiation between benign and malignant parotid gland tumors is challenging. Apparent Diffusion Coefficient (ADC) from Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) and systemic inflammatory markers such as neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have emerged as non-invasive diagnostic tools. Aims/Objectives: To evaluate the diagnostic utility of ADC, NLR, and PLR individually and in combination for distingushing benign from malignant parotid tumors and for differentiating major histopathological subtypes. Material and Methods: This retrospective study included 138 patients with histopathologically confirmed parotid tumors. ADC values were obtained from DW-MRI, and NLR and PLR were calculated from preoperative CBC. A decision tree model incorporating age, gender, ADC, PLR, and NLR was developed, and diagnostic performance was assessed using ROC analysis. Results: Complete data was available for for 108 patients. The decision tree achieved an AUC of 0.837 for malignancy prediction, with age and PLR as key predictors. Excluding ADC did not impact model performance (AUC=0.837; p=1.0). While ADC alone did not differentiate malignancy, it was effective for subtype classification: AUC=0.891 for Warthin tumor vs pleomorphic adenoma, and 0.771 for pleomorphic adenoma vs mucoepidermoid carcinoma. Conclusions and Significance: Systemic inflammation markers enhance malignancy prediction, whereas ADC contributes meaningfully to histological subtype differentiation.
dc.identifier.citationKilictas, A. U., Erdivanlı, O. C., Birinci, M., Beyazal Celiker, F., Terzi, S., Celiker, M., Coskun, Z. O., & Dursun, E. (2025). Evaluation of parotid tumors using systemic inflammation markers and diffusion-weighted magnetic resonance images. Acta oto-laryngologica, 1–9. Advance online publication. https://doi.org/10.1080/00016489.2025.2554650
dc.identifier.doi10.1080/00016489.2025.2554650
dc.identifier.issn0001-6489
dc.identifier.pmid40937964
dc.identifier.scopus2-s2.0-105016583640
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1080/00016489.2025.2554650
dc.identifier.urihttps://hdl.handle.net/11436/11265
dc.identifier.wosWOS:001570355700001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakWeb of Science
dc.institutionauthorErdivanlı, Özlem Çelebi
dc.institutionauthorBirinci, Mehmet
dc.institutionauthorBeyazal Çeliker, Fatma
dc.institutionauthorÇeliker, MEtin
dc.institutionauthorCoşkun, Zerrin Özergin
dc.institutionauthorid0000-0002-9833-402X
dc.language.isoen
dc.publisherTaylor and Francis Ltd.
dc.relation.ispartofActa Oto-Laryngologica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBenign
dc.subjectDiffusion-weighted magnetic resonance imaging
dc.subjectMalignant
dc.subjectParotid tumors
dc.subjectSystemic inflammation
dc.titleEvaluation of parotid tumors using systemic inflammation markers and diffusion-weighted magnetic resonance images
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
kılıçtaş-2025 (2).pdf
Boyut:
2.14 MB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: