Basit öğe kaydını göster

dc.contributor.authorAktaş, Abdulsamet
dc.contributor.authorSerbes, Görkem
dc.contributor.authorUzun, Hakkı
dc.contributor.authorYiğit, Merve Hüner
dc.contributor.authorAydın, Nizamettin
dc.contributor.authorİlhan, Hamza Osman
dc.date.accessioned2025-08-04T11:20:52Z
dc.date.available2025-08-04T11:20:52Z
dc.date.issued2025en_US
dc.identifier.citationAktas, A., Serbes, G., Uzun, H., Yigit, M. H., Aydin, N., & Ilhan, H. O. (2025). Hi‐LabSpermTracking: A Novel and High‐Quality Sperm Tracking Dataset with an Advanced Ensemble Detection and Tracking Approach for Real‐World Clinical Scenarios. Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202500115en_US
dc.identifier.issn2640-4567
dc.identifier.urihttps://doi.org/10.1002/aisy.202500115
dc.identifier.urihttps://hdl.handle.net/11436/10789
dc.description.abstractSperm motility, a critical factor in diagnosing male infertility, requires computer-based solutions due to the limitations of manual evaluation methods. This study introduces the Hi-LabSpermTracking dataset, comprising 66 videos (60 s each, 10 fps) collected from 14 patients and meticulously annotated by experts. Unlike similar datasets, these uninterrupted, long-duration videos enable continuous tracking of individual sperm cells, each assigned a unique ID throughout the video, supporting both sperm detection and tracking tasks. Experimental evaluations employ you only look once v8 (YOLOv8), real-time detection transformer, and simple online and realtime tracking with a deep association metric across three scenarios. In Scenario I (sperm detection), the YOLOv8n model achieves 98.9% mAP50 and 97.9% F1-score. In Scenario II (sperm tracking), performance metrics include 83.88% mAP50, 87.63% F1-score, 72.27% higher order tracking accuracy (HOTA), and 77.88% multiple object tracking accuracy (MOTA). Scenario III simulates real-world challenges by separating training and testing videos. Ensemble methods are applied, with the proposed mean ensemble achieving superior results: 86.55% mAP50, 87.87% F1-score, 66.66% HOTA, and 76.42% MOTA. The Hi-LabSpermTracking dataset enables robust sperm tracking research, while the mean ensemble method amplifies accuracy by uniting model strengths.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDataset benchmarken_US
dc.subjectDeep learningen_US
dc.subjectInfertilityen_US
dc.subjectSperm detection and trackingen_US
dc.titleHi-labspermtracking: a novel and high-quality sperm tracking dataset with an advanced ensemble detection and tracking approach for real-world clinical scenariosen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümüen_US
dc.contributor.institutionauthorUzun, Hakkı
dc.contributor.institutionauthorYiğit, Merve Hüner
dc.identifier.doi10.1002/aisy.202500115en_US
dc.relation.journalAdvanced Intelligent Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster