Basit öğe kaydını göster

dc.contributor.authorVenu, Harish
dc.contributor.authorSoudagar, Manzoore Elahi M.
dc.contributor.authorKiong, Tiong Sieh
dc.contributor.authorRazali, N. M.
dc.contributor.authorWei, Hua-Rong
dc.contributor.authorKhan, T. M. Yunus
dc.contributor.authorAlmakayeel, Naif
dc.contributor.authorKalam, M. A.
dc.contributor.authorCüce, Erdem
dc.date.accessioned2025-08-14T06:26:19Z
dc.date.available2025-08-14T06:26:19Z
dc.date.issued2025en_US
dc.identifier.citationVenu, H., Soudagar, M. E. M., Kiong, T. S., Razali, N. M., Wei, H.-R., Khan, T. M. Y., Almakayeel, N., Kalam, M. A., & Cuce, E. (2025). Performance and emission prediction using ANN (artificial neural network) on H2-assisted Garcinia gummi-gutta biofuel doped with nano additives. Scientific Reports, 15(1), 5911. https://doi.org/10.1038/s41598-025-90165-2en_US
dc.identifier.issn2045-2322
dc.identifier.urihttps://doi.org/10.1038/s41598-025-90165-2
dc.identifier.urihttps://hdl.handle.net/11436/10894
dc.description.abstractThe current work focuses on utilization of ANN (artificial neural network) for the prediction of performance and tailpipe emissions of Garcinia gummigutta methyl ester (GGME) enriched with H2 and TiO2 nano additives. For experimentation, H2 gas was introduced to the mixes containing TiO2 nanoparticles. Diesel, B10 blend (10% GGME biofuel + 90% Diesel), B20 (20% GGME biofuel + 80% Diesel), Diesel-TiO2 (Mineral Diesel with 100 ppm TiO2 nano additives), B10-H2-TiO2 (B10 blend with 100 ppm nano additives + 5 L/min of H2) and B20-H2-TiO2 (B20 blend with 100 ppm nanoparticles + 5 L/min of H2) were considered for experimentation. A constant mass flow rate of 10 L/min was used for the hydrogen flow throughout the test procedures. Test results were carefully analyzed to determine the performance and emission measures. Different speeds between 1800 and 2800 rpm were used for each test. When combined with pure Diesel and mixtures of biodiesel, these nanoparticles and hydrogen enhanced the performance data. For instance, the brake-specific fuel consumption was reduced but the power, torque, and thermal efficiency were increased. Although there was a modest rise in NO emissions, the primary goal of lowering CO, CO2, and other UHC emissions was met. The ANN models confirm and agreed the Diesel engine experimental work possesses minimal root mean square error (RMSE) and correlation coefficient values were estimated. This ideal model predicts and optimizes the engine output at a higher accuracy level, which gives better results compared with other empirical and theoretical models.en_US
dc.language.isoengen_US
dc.publisherNature Portfolioen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectGarcinia gummi-gutta biodieselen_US
dc.subjectDiesel engineen_US
dc.subjectPerformance and pollutant emissionsen_US
dc.titlePerformance and emission prediction using ANN (artificial neural network) on H2-assisted Garcinia gummi-gutta biofuel doped with nano additivesen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Makine Mühendisliği Bölümüen_US
dc.contributor.institutionauthorCüce, Erdem
dc.identifier.doi10.1038/s41598-025-90165-2en_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.identifier.startpage5911en_US
dc.relation.journalScientific Reportsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster