Basit öğe kaydını göster

dc.contributor.authorDemirtaş, Coşkun O.
dc.contributor.authorAkın, Şehnaz
dc.contributor.authorKaradağ, Demet Yılmaz
dc.contributor.authorYılmaz, Tuba
dc.contributor.authorÇiftçi, Uğur
dc.contributor.authorHuseynov, Javid
dc.contributor.authorBulte, Tuğba Tolu
dc.contributor.authorKaldırım, Yasemin Armutcuoğlu
dc.contributor.authorDilber, Feyza
dc.contributor.authorÖzdoğan, Osman Cavit
dc.contributor.authorEren, Fatih
dc.date.accessioned2025-08-22T11:56:23Z
dc.date.available2025-08-22T11:56:23Z
dc.date.issued2025en_US
dc.identifier.citationDemirtas, C. O., Akin, S., Yilmaz Karadag, D., Yilmaz, T., Ciftci, U., Huseynov, J., Tolu Bulte, T., Armutcuoglu Kaldirim, Y., Dilber, F., Ozdogan, O. C., & Eren, F. (2025). Enhancing Hepatocellular Carcinoma Surveillance: Comparative Evaluation of AFP, AFP-L3, DCP and Composite Models in a Biobank-Based Case-Control Study. Cancers, 17(14), 2390. https://doi.org/10.3390/cancers17142390en_US
dc.identifier.issn2072-6694
dc.identifier.urihttps://doi.org/10.3390/cancers17142390
dc.identifier.urihttps://hdl.handle.net/11436/10982
dc.description.abstractBackground/Objectives: Biomarkers such as lens agglutinin-reactive alpha-fetoprotein and des-gamma-carboxy prothrombin, as well as biomarker- and/or clinical-parameter-derived composite models (GALAD, GAAP, ASAP, aMAP, Doylestown), may improve detection in addition to alpha-fetoprotein, yet comparative data across diverse populations remain limited. Methods: In this biobank-based case-control study, we evaluated 562 adults (120 healthy controls, 277 chronic liver disease, 165 hepatocellular carcinoma) from January 2019 to 2024. Diagnostic performance for any-stage and early-stage hepatocellular carcinoma was assessed across three thresholds: Youden-index-derived optimal cut-offs, research-established cut-offs, and cut-offs ensuring 90% specificity. Receiver operating characteristic analysis was performed. Subgroup analyses were stratified by etiology and alpha-fetoprotein status. Results: At optimal cut-offs, GALAD showed the highest sensitivity for any-stage (90.3%) and early-stage (89.1%) hepatocellular carcinoma, with 70-80% specificity. Using established cut-offs, GALAD retained the highest sensitivity for any-stage (75.8%) and early-stage (57.8%) hepatocellular carcinoma, with 93.5% specificity. GALAD demonstrated the best performance in non-viral hepatocellular carcinomas (area under the curve 0.872), whereas GAAP and ASAP showed similarly high area under the curve values in viral etiology (area under the curve 0.955-0.960). Conclusions: Our results demonstrate the consistent performance of the GALAD score across diverse populations and underscore its superiority over individual biomarkers and other composite models. Notably, the GAAP and ASAP scores-which use one less biomarker (AFP-L3)-exhibited comparable performance, particularly in viral etiology. These findings support the integration of the composite biomarker models into tailored hepatocellular carcinoma surveillance strategies.en_US
dc.language.isoengen_US
dc.publisherMDPI (Multidisciplinary Digital Publishing Institute)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlpha-fetoproteinen_US
dc.subjectLens agglutinin-reactive alpha-fetoproteinen_US
dc.subjectDes-gamma-carboxy prothrombinen_US
dc.subjectHepatocellular carcinomaen_US
dc.subjectGALADen_US
dc.subjectGAAPen_US
dc.subjectASAPen_US
dc.titleEnhancing hepatocellular carcinoma surveillance: comparative evaluation of AFP, AFP-L3, DCP and composite models in a biobank-based case-control studyen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Tıp Fakültesi, Temel Tıp Bilimleri Bölümüen_US
dc.contributor.institutionauthorEren, Fatih
dc.identifier.doi10.3390/cancers17142390en_US
dc.identifier.volume17en_US
dc.identifier.issue14en_US
dc.identifier.startpage2390en_US
dc.relation.journalCancersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster