Basit öğe kaydını göster

dc.contributor.authorTian, Yang
dc.contributor.authorGao, Yu
dc.contributor.authorTurumtay, Halbay
dc.contributor.authorTurumtay, Emine Akyüz
dc.contributor.authorChai, Yen Ning
dc.contributor.authorChoudhary, Hemant
dc.contributor.authorPark, Joon-Hyun
dc.contributor.authorWu, Chuan-Yin
dc.contributor.authorDe Ben, Christopher M.
dc.contributor.authorDalton, Jutta
dc.contributor.authorLouie, Katherine B.
dc.contributor.authorHarwood, Thomas
dc.contributor.authorChin, Dylan
dc.contributor.authorVuu, Khanh
dc.contributor.authorBowen, Benjamin P
dc.contributor.authorShih, Patrick M.
dc.contributor.authorBaidoo, Edward E. K.
dc.contributor.authorNorthen, Trent R.
dc.contributor.authorSimmons, Blake A.
dc.contributor.authorHutmacher, Robert
dc.contributor.authorAtim, Jackie
dc.contributor.authorPutnam, Daniel H.
dc.contributor.authorScown, Corinne D.
dc.contributor.authorMortimer, Jenny C.
dc.contributor.authorScheller, Henrik V.
dc.contributor.authorEudes, Aymerick
dc.date.accessioned2024-11-10T11:55:41Z
dc.date.available2024-11-10T11:55:41Z
dc.date.issued2024en_US
dc.identifier.citationTian, Y., Gao, Y., Turumtay, H., Turumtay, E. A., Chai, Y. N., Choudhary, H., Park, J.-H., Wu, C.-Y., De Ben, C. M., Dalton, J., Louie, K. B., Harwood, T., Chin, D., Vuu, K. M., Bowen, B. P., Shih, P. M., Baidoo, E. E. K., Northen, T. R., Simmons, B. A., . . . Eudes, A. (2024). Engineered reduction of S-adenosylmethionine alters lignin in sorghum. Biotechnology for Biofuels and Bioproducts, 17(1). https://doi.org/10.1186/s13068-024-02572-8en_US
dc.identifier.issn2731-3654
dc.identifier.urihttps://doi.org/10.1186/s13068-024-02572-8
dc.identifier.urihttps://hdl.handle.net/11436/9741
dc.description.abstractBackground Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue. For example, previous work showed that heterologous expression of a coliphage S-adenosylmethionine hydrolase (AdoMetase) was an effective approach to reduce lignin in the model plant Arabidopsis. The efficacy of this engineering strategy remains to be evaluated in bioenergy crops. Results We studied the impact of expressing AdoMetase on lignin synthesis in sorghum (Sorghum bicolor L. Moench). Lignin content, monomer composition, and size, as well as biomass saccharification efficiency were determined in transgenic sorghum lines. The transcriptome and metabolome were analyzed in stems at three developmental stages. Plant growth and biomass composition was further evaluated under field conditions. Results evidenced that lignin was reduced by 18% in the best transgenic line, presumably due to reduced activity of the S-adenosylmethionine-dependent O-methyltransferases involved in lignin synthesis. The modified sorghum features altered lignin monomer composition and increased lignin molecular weights. The degree of methylation of glucuronic acid on xylan was reduced. These changes enabled a similar to 20% increase in glucose yield after biomass pretreatment and saccharification compared to wild type. RNA-seq and untargeted metabolomic analyses evidenced some pleiotropic effects associated with AdoMetase expression. The transgenic sorghum showed developmental delay and reduced biomass yields at harvest, especially under field growing conditions. Conclusions The expression of AdoMetase represents an effective lignin engineering approach in sorghum. However, considering that this strategy potentially impacts multiple S-adenosylmethionine-dependent methyltransferases, adequate promoters for fine-tuning AdoMetase expression will be needed to mitigate yield penalty.en_US
dc.language.isoengen_US
dc.publisherBMCen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCell wallen_US
dc.subjectMonolignolsen_US
dc.subjectSaccharificationen_US
dc.subjectO-methyltransferasesen_US
dc.subjectBioenergy croen_US
dc.titleEngineered reduction of S-adenosylmethionine alters lignin in sorghumen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Fen - Edebiyat Fakültesi, Kimya Bölümüen_US
dc.contributor.institutionauthorTurumtay, Emine Akyüz
dc.identifier.doi10.1186/s13068-024-02572-8en_US
dc.identifier.volume17en_US
dc.identifier.issue1en_US
dc.identifier.startpage128en_US
dc.relation.journalBiotechnology for Biofuels and Bioproductsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster