• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hi-labspermtracking: a novel and high-quality sperm tracking dataset with an advanced ensemble detection and tracking approach for real-world clinical scenarios

View/Open

Full Text / Tam Metin (7.549Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Aktaş, Abdulsamet
Serbes, Görkem
Uzun, Hakkı
Yiğit, Merve Hüner
Aydın, Nizamettin
İlhan, Hamza Osman

Metadata

Show full item record

Citation

Aktas, A., Serbes, G., Uzun, H., Yigit, M. H., Aydin, N., & Ilhan, H. O. (2025). Hi‐LabSpermTracking: A Novel and High‐Quality Sperm Tracking Dataset with an Advanced Ensemble Detection and Tracking Approach for Real‐World Clinical Scenarios. Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202500115

Abstract

Sperm motility, a critical factor in diagnosing male infertility, requires computer-based solutions due to the limitations of manual evaluation methods. This study introduces the Hi-LabSpermTracking dataset, comprising 66 videos (60 s each, 10 fps) collected from 14 patients and meticulously annotated by experts. Unlike similar datasets, these uninterrupted, long-duration videos enable continuous tracking of individual sperm cells, each assigned a unique ID throughout the video, supporting both sperm detection and tracking tasks. Experimental evaluations employ you only look once v8 (YOLOv8), real-time detection transformer, and simple online and realtime tracking with a deep association metric across three scenarios. In Scenario I (sperm detection), the YOLOv8n model achieves 98.9% mAP50 and 97.9% F1-score. In Scenario II (sperm tracking), performance metrics include 83.88% mAP50, 87.63% F1-score, 72.27% higher order tracking accuracy (HOTA), and 77.88% multiple object tracking accuracy (MOTA). Scenario III simulates real-world challenges by separating training and testing videos. Ensemble methods are applied, with the proposed mean ensemble achieving superior results: 86.55% mAP50, 87.87% F1-score, 66.66% HOTA, and 76.42% MOTA. The Hi-LabSpermTracking dataset enables robust sperm tracking research, while the mean ensemble method amplifies accuracy by uniting model strengths.

Source

Advanced Intelligent Systems

URI

https://doi.org/10.1002/aisy.202500115
https://hdl.handle.net/11436/10789

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6142]
  • TF, Cerrahi Tıp Bilimleri Bölümü Koleksiyonu [1235]
  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [707]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.